

Low Voltage 1:18 Clock Distribution Chip

MPC9109

The MPC9109 is a 1:18 low voltage clock distribution chip with 2.5 V or 3.3 V LVCMOS output capabilities. The device features the capability to select either a differential LVPECL or an LVCMOS compatible input. The 18 outputs are 2.5 V or 3.3 V LVCMOS compatible and feature the drive strength to drive 50 Ω series or parallel terminated transmission lines. With output-to-output skews of 200 ps, the MPC9109 is ideal as a clock distribution chip for the most demanding of synchronous systems. The 2.5 V outputs also make the device ideal for supplying clocks for a high performance Pentium IITM microprocessor based design. For a higher performance version of the 9109 refer to the MPC940L data sheet.

Features

- · LVPECL or LVCMOS clock input
- 2.5 V LVCMOS outputs for Pentium II microprocessor support
- 200 ps maximum output-to-output skew @ 3.3 V output
- Maximum output frequency of 250 MHz @ 3.3 V core
- 32-lead QFP packaging
- · Dual or single supply device:
 - Dual V_{CC} supply voltage, 3.3 V core and 2.5 V output
 - Single 3.3 V V_{CC} supply voltage for 3.3 V outputs
 - Single 2.5 V V_{CC} supply voltage for 2.5 V I/O

Functional Description

With a low output impedance (\approx 20 Ω), in both the HIGH and LOW logic states, the output buffers of the MPC9109 are ideal for driving series terminated trans-

mission lines. With a 20 Ω output impedance the 9109 has the capability of driving two series terminated lines from each output. This gives the device an effective fanout of 1:36. If a lower output impedance is desired please see the MPC942 data sheet. If better performance is desired please see the MPC940L data sheet.

The differential LVPECL inputs of the MPC9109 allow the device to interface directly with a LVPECL fanout buffer like the MC100EP111 to build very wide clock fanout trees or to couple to a high frequency clock source. The LVCMOS input provides a more standard interface for applications requiring only a single clock distribution chip at relatively low frequencies. In addition, the two clock sources can be used to provide for a test clock interface as well as the primary system clock. A logic HIGH on the LVCMOS_CLK_Sel pin will select the LVCMOS level clock input. All inputs of the MPC9109 have internal pullup/pulldown resistor so they can be left open if unused.

The MPC9109 is a single or dual supply device. The device power supply offers a high degree of flexibility. The device can operate with a 3.3 V core and 3.3 V output, a 3.3 V core and 2.5 V outputs as well as a 2.5 V core and 2.5 V outputs. The 32-lead QFP package was chosen to optimize performance, board space and cost of the device. The 32-lead TQFP has a 7x7mm body size with a conservative 0.8 mm pin spacing.

LOW VOLTAGE 1:18 CLOCK DISTRIBUTION CHIP

FA SUFFIX 32-LEAD LQFP PACKAGE CASE 873A-04

AC SUFFIX 32-LEAD LQFP PACKAGE Pb-FREE PACKAGE CASE 873A-04

Pentium II is a trademark of Intel Corporation.

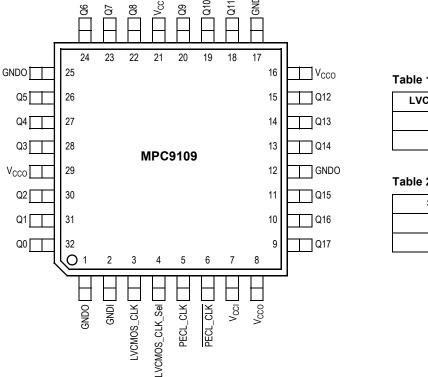



Figure 1. Logic Diagram

Table 1. Function Table

LVCMOS CLK_Sel	Input
0	PECL_CLK
1	LVCMOS_CLK

Table 2. Power Supply Voltages

Supply Pin	Voltage Level
V _{CCI}	2.5 V or 3.3 V ± 5%
V _{cco}	2.5 V or 3.3 V ± 5%

Figure 2. Pinout: 32-Lead TQFP (Top View)

Table 3. Absolute Maximum Ratings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	-0.3	3.6	V
VI	Input Voltage	-0.3	V _{CC} + 0.3	V
I _{IN}	Input Current		±20	mA
T _{Stor}	Storage Temperature Range	-40	125	°C

Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

Table 4. DC Characteristics ($T_A = 0^\circ$ to 70° C, $V_{CCI} = 3.3 \text{ V} \pm 5\%$; $V_{CCO} = 3.3 \text{ V} \pm 5\%$)

Symbol	Characteristic		Min	Тур	Max	Unit	Condition
V _{IH}	Input HIGH Voltage	CMOS_CLK	2.4		V _{CCI}	V	
V _{IL}	Input LOW Voltage	CMOS_CLK			0.8	V	
V _{PP}	Peak-to-Peak Input Voltage	PECL_CLK	500		1000	mV	
V _{CMR}	Common Mode Range	PECL_CLK	V _{CC} -1.4		V _{CC} -0.6	V	
V _{OH}	Output HIGH Voltage		2.4			V	I _{OH} = -20 mA
V _{OL}	Output LOW Voltage				0.5	V	I _{OH} = 20 mA
I _{IN}	Input Current				±200	μΑ	
C _{IN}	Input Capacitance			4.0		pF	
C _{pd}	Power Dissipation Capacitance			10		pF	Per output
Z _{OUT}	Output Impedance		18	23	28	Ω	
I _{CC}	Maximum Quiescent Supply Current			0.5		mA	

Table 5. AC Characteristics (T_A = 0° to 70°C, V_{CCI} = 3.3 V ± 5%; V_{CCO} = 3.3 V ± 5%)

Symbol	Characteristic		Min	Тур	Max	Unit	Condition
F _{max}	Maximum Input Frequency				250	MHz	
t _{PLH}	Propagation Delay	PECL_CLK CMOS_CLK	1.8 1.6	2.8 2.5	3.8 3.3	ns	Note ⁽¹⁾
t _{sk(o)}	Output-to-Output Skew	PECL_CLK CMOS_CLK			200 200	ps	Note ⁽¹⁾
t _{sk(pr)}	Part-to-Part Skew	PECL_CLK CMOS_CLK			2.0 1.7	ns	Note ⁽¹⁾
d _t	Duty Cycle		45		55	%	Note ⁽¹⁾
t _r , t _f	Output Rise/Fall Time		0.1		1.3	ns	Note ⁽¹⁾

^{1.} Guaranteed by statistical analysis, not 100% tested in production.

Table 6. Absolute Maximum Ratings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	-0.3	3.6	V
V _I	Input Voltage	-0.3	V _{CC} + 0.3	V
I _{IN}	Input Current		±20	mA
T _{Stor}	Storage Temperature Range	-40	125	°C

Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

Table 7. DC Characteristics (T_A = 0° to 70°C, V_{CCI} = 3.3 V ± 5%; V_{CCO} = 2.5 V ± 5%)

Symbol	Characteristic		Min	Тур	Max	Unit	Condition
V _{IH}	Input HIGH Voltage	CMOS_CLK	2.4		V _{CCI}	V	
V _{IL}	Input LOW Voltage	CMOS_CLK			0.8	V	
V_{PP}	Peak-to-Peak Input Voltage	PECL_CLK	500		1000	mV	
V_{CMR}	Common Mode Range	PECL_CLK	V _{CC} -1.4		V _{CC} -0.6	V	
V _{OH}	Output HIGH Voltage		1.8			V	I _{OH} = -20 mA
V_{OL}	Output LOW Voltage				0.5	V	I _{OH} = 20 mA
I _{IN}	Input Current				±200	μΑ	
C _{IN}	Input Capacitance			4.0		pF	
$C_{\sf pd}$	Power Dissipation Capacitance			10		pF	Per output
Z _{OUT}	Output Impedance			23		Ω	
I _{CC}	Maximum Quiescent Supply Current			0.5		mA	

Table 8. AC Characteristics (T_A = 0° to 70°C, V_{CCI} = 3.3 V ± 5%; V_{CCO} = 2.5 V ± 5%)

Symbol	Characteristic		Min	Тур	Max	Unit	Condition
F _{max}	Maximum Input Frequency				250	MHz	
t _{PLH}	Propagation Delay	PECL_CLK CMOS_CLK		2.8 2.5	3.9 3.4	ns	Note ⁽¹⁾
t _{sk(o)}	Output-to-Output Skew	PECL_CLK CMOS_CLK			250 250	ps	Note ⁽¹⁾
t _{sk(pr)}	Part-to-Part Skew	PECL_CLK CMOS_CLK			2.1 1.8	ns	Note ⁽¹⁾
d _t	Duty Cycle		45		55	%	Note ⁽¹⁾
t _r , t _f	Output Rise/Fall Time		0.1		1.3	ns	Note ⁽¹⁾

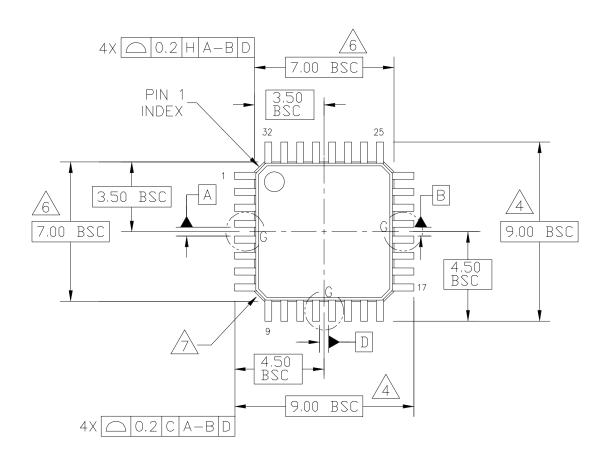
^{1.} Guaranteed by statistical analysis, not 100% tested in production.

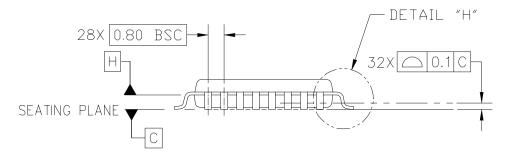
Table 9. Absolute Maximum Ratings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	-0.3	3.6	V
VI	Input Voltage	-0.3	V _{CC} + 0.3	V
I _{IN}	Input Current		±20	mA
T _{Stor}	Storage Temperature Range	-40	125	°C

Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

Table 10. DC Characteristics (T_A = 0° to 70°C, V_{CCI} = 2.5 V \pm 5%; V_{CCO} = 2.5 V \pm 5%)

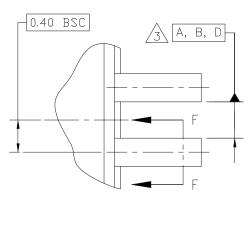

Symbol	Characteristic		Min	Тур	Max	Unit	Condition
V _{IH}	Input HIGH Voltage	CMOS_CLK	2.0		V _{CCI}	V	
V _{IL}	Input LOW Voltage	CMOS_CLK			0.8	V	
V _{PP}	Peak-to-Peak Input Voltage	PECL_CLK	500		1000	mV	
V_{CMR}	Common Mode Range	PECL_CLK	V _{CC} -1.0		V _{CC} -0.6	V	
V _{OH}	Output HIGH Voltage		1.8			V	I _{OH} = -12 mA
V _{OL}	Output LOW Voltage				0.5	V	I _{OH} = 12 mA
I _{IN}	Input Current				±200	μΑ	
C _{IN}	Input Capacitance			4.0		pF	
C _{pd}	Power Dissipation Capacitance			10		pF	Per output
Z _{OUT}	Output Impedance		18	23	28	Ω	
I _{CC}	Maximum Quiescent Supply Current			0.5		mA	


Table 11. AC Characteristics (T_A = 0° to 70° C, V_{CCI} = 2.5 V \pm 5%; V_{CCO} = 2.5 V \pm 5%)

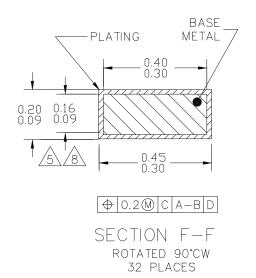
Symbol	Characteristic		Min	Тур	Max	Unit	Condition
F _{max}	Maximum Input Frequency				200	MHz	
t _{PLH}	Propagation Delay	PECL_CLK CMOS_CLK		2.8 2.5	4.9 4.2	ns	Note ⁽¹⁾
t _{sk(o)}	Output-to-Output Skew	PECL_CLK CMOS_CLK			250 250	ps	Note ⁽¹⁾
t _{sk(pr)}	Part-to-Part Skew	PECL_CLK CMOS_CLK			2.7 2.2	ns	Note ⁽¹⁾
d _t	Duty Cycle		45		55	%	Note ⁽¹⁾
t _r , t _f	Output Rise/Fall Time		0.1		1.3	ns	Note ⁽¹⁾

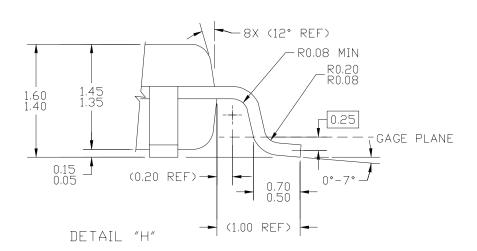
^{1.} Guaranteed by statistical analysis, not 100% tested in production.

PACKAGE DIMENSIONS



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	TO SCALE
TITLE:		DOCUMENT NO	I: 98ASH70029A	REV: C
LOW PROFILE QUAD FLAT PA		CASE NUMBER	2: 873A-04	01 APR 2005
32 LEAD, 0.8 PITCH (7 X	STANDARD: JE	DEC MS-026 BBA		


PAGE 1 OF 3


CASE 873A-04 ISSUE C 32-LEAD LQFP PACKAGE

PACKAGE DIMENSIONS

DETAIL G

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: LOW PROFILE QUAD FLAT PACK (LQFP) 32 LEAD, 0.8 PITCH (7 X 7 X 1.4)		DOCUMENT NO: 98ASH70029A		REV: C
		CASE NUMBER: 873A-04		01 APR 2005
		STANDARD: JE	IDEC MS-026 BBA	

PAGE 2 OF 3

CASE 873A-04 ISSUE C 32-LEAD LQFP PACKAGE

PACKAGE DIMENSIONS

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5-1994.

A DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE H.

4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE DATUM C.

DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM DIMENSION BY MORE THAN 0.08 MM. DAMBAR CANNOT BE LOCATED ON THZ LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION: 0.07 MM.

6. DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION, ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE, DIMENSIONS ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.

7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.

THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 MM AND 0.25 MM FROM THE LEAD TIP.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: LOW PROFILE QUAD FLAT PACK (LQFP) 32 LEAD, 0.8 PITCH (7 X 7 X 1.4)		DOCUMENT NO: 98ASH70029A		REV: C
		CASE NUMBER: 873A-04		01 APR 2005
		STANDARD: JE	IDEC MS-026 BBA	

PAGE 3 OF 3

CASE 873A-04 ISSUE C 32-LEAD LQFP PACKAGE

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 **For Tech Support**

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

